357 research outputs found

    L-systems in Geometric Modeling

    Full text link
    We show that parametric context-sensitive L-systems with affine geometry interpretation provide a succinct description of some of the most fundamental algorithms of geometric modeling of curves. Examples include the Lane-Riesenfeld algorithm for generating B-splines, the de Casteljau algorithm for generating Bezier curves, and their extensions to rational curves. Our results generalize the previously reported geometric-modeling applications of L-systems, which were limited to subdivision curves.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Leonardo's rule, self-similarity and wind-induced stresses in trees

    Full text link
    Examining botanical trees, Leonardo da Vinci noted that the total cross-section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads

    Algorithmic Form Generation of a Radiolarian Pavilion

    Full text link

    Self-repair ability of evolved self-assembling systems in cellular automata

    Get PDF
    Self-repairing systems are those that are able to reconfigure themselves following disruptions to bring them back into a defined normal state. In this paper we explore the self-repair ability of some cellular automata-like systems, which differ from classical cellular automata by the introduction of a local diffusion process inspired by chemical signalling processes in biological development. The update rules in these systems are evolved using genetic programming to self-assemble towards a target pattern. In particular, we demonstrate that once the update rules have been evolved for self-assembly, many of those update rules also provide a self-repair ability without any additional evolutionary process aimed specifically at self-repair

    Extending Grammatical Evolution to Evolve Digital Surfaces with Genr8

    Full text link

    A complementary view on the growth of directory trees

    Full text link
    Trees are a special sub-class of networks with unique properties, such as the level distribution which has often been overlooked. We analyse a general tree growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of user-generated directory structures in computers. The model has a single parameter qq which interpolates between preferential attachment and random growth. Our analysis results in three contributions: First, we propose a more efficient estimation method for qq based on the degree distribution, which is one specific representation of the model. Next, we introduce the concept of a level distribution and analytically solve the model for this representation. This allows for an alternative and independent measure of qq. We argue that, to capture real growth processes, the qq estimations from the degree and the level distributions should coincide. Thus, we finally apply both representations to validate the model with synthetically generated tree structures, as well as with collected data of user directories. In the case of real directory structures, we show that qq measured from the level distribution are incompatible with qq measured from the degree distribution. In contrast to this, we find perfect agreement in the case of simulated data. Thus, we conclude that the model is an incomplete description of the growth of real directory structures as it fails to reproduce the level distribution. This insight can be generalised to point out the importance of the level distribution for modeling tree growth.Comment: 16 pages, 7 figure

    Multiscale Bone Remodelling with Spatial P Systems

    Get PDF
    Many biological phenomena are inherently multiscale, i.e. they are characterized by interactions involving different spatial and temporal scales simultaneously. Though several approaches have been proposed to provide "multilayer" models, only Complex Automata, derived from Cellular Automata, naturally embed spatial information and realize multiscaling with well-established inter-scale integration schemas. Spatial P systems, a variant of P systems in which a more geometric concept of space has been added, have several characteristics in common with Cellular Automata. We propose such a formalism as a basis to rephrase the Complex Automata multiscaling approach and, in this perspective, provide a 2-scale Spatial P system describing bone remodelling. The proposed model not only results to be highly faithful and expressive in a multiscale scenario, but also highlights the need of a deep and formal expressiveness study involving Complex Automata, Spatial P systems and other promising multiscale approaches, such as our shape-based one already resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Shall We (Math and) Dance?

    Full text link
    Can we use mathematics, and in particular the abstract branch of category theory, to describe some basics of dance, and to highlight structural similarities between music and dance? We first summarize recent studies between mathematics and dance, and between music and categories. Then, we extend this formalism and diagrammatic thinking style to dance.Comment: preprin
    • …
    corecore